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Summary: Gliomas arise through genetic and epigenetic alter-
ations of normal brain cells, although the exact cell of origin
for each glioma subtype is unknown. The alteration-induced
changes in gene expression and protein function allow uncon-
trolled cell division, tumor expansion, and infiltration into sur-
rounding normal brain parenchyma. The genetic and epigenetic
alterations are tumor subtype and tumor-grade specific. Partic-
ular alterations predict tumor aggressiveness, tumor response to
therapy, and patient survival. Genetic alterations include dele-
tion, gain, amplification, mutation, and translocation, which
result in oncogene activation and tumor suppressor gene inac-
tivation, or in some instances the alterations may simply be a
consequence of tumorigenesis. Epigenetic alterations in brain
tumors include CpG island hypermethylation associated with
tumor suppressor gene silencing, gene-specific hypomethyla-
tion associated with aberrant gene activation, and genome-wide

hypomethylation potentially leading to loss of imprinting, chro-
mosomal instability, and cellular hyperproliferation. Other epi-
genetic alterations, such as changes in the position of histone
variants and changes in histone modifications are also likely to
be important in the molecular pathology of brain tumors. Given
that histone deacetylases are targets for drugs that are already in
clinical trial, surprisingly little is known about histone acety-
lation in primary brain tumors. Although a majority of epige-
netic alterations are independent of genetic alterations, there is
interaction on specific genes, signaling pathways and within
chromosomal domains. Next-generation sequencing technol-
ogy is now the method of choice for genomic and epigenome
profiling, allowing more comprehensive understanding of ge-
netic and epigenetic contributions to tumorigenesis in the brain.
Key Words: Genomics, epigenomics, gliomas, methylation,
acetylation.

GENE REGULATION BY EPIGENETIC
MECHANISMS

Epigenetics is defined as mitotically heritable changes
in gene expression that are not due to changes in the
primary DNA sequence. Epigenetic mechanisms include
enzymatic modification of DNA and associated histone
proteins that regulate and maintain gene expression
states, and have important roles in chromosome structure
and stability. The discovery of altered epigenetic profiles
in human neoplasia has led to a new paradigm in which
both genetic and epigenetic mechanisms contribute sig-
nificantly to cancer and perhaps many other common
human diseases. Because of their reversible nature, epi-
genetic alterations are being targeted therapeutically in
cancer clinical trials.

Covalent modifications of DNA and amino acids on
histones are two major mechanisms of epigenetic gene
regulation. DNA methylation involves the addition of a
methyl group to cytosine to create 5-methylcytosine. In
mammals methylation occurs primarily at 5=-CpG-3=
dinucleotides, and occasionally at CpNpGs as well.1

DNA methylation is controlled by DNA methyltrans-
ferases (DNMT) that create (DNMT3A, DNMT3B) or
maintain (DNMT1) patterns of methylation.2,3 DNA
methylation is required for maintaining gene silencing on
the inactive X chromosome,4–6 parental allele-specific
expression of imprinted loci,7 and tissue and cell-type-
specific gene expression. Methylation is also required for
silencing transposable elements and maintaining genome
stability8,9 and is a critical regulator of pluripotency
genes.10–12

A second type epigenetic mechanism is the post-trans-
lational modification of N-terminal tails of histone pro-
teins by acetylation, methylation, phosphorylation, ubiq-
uitylation, sumoylation, ADP ribosylation, biotinylation,
and potentially other modifications.13 Like DNA meth-
ylation, specific enzymes also catalyze post-translational
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modifications of histones, and include acetyltransferases
and deacetylases, methyltransferases and demethylases,
among others. In contrast to DNA methylation, histone
methylation can be mono-, di-, or tri-methylated on a
single, specific lysine (i.e., at H3K4). Multiple types of
modifications are present on a single histone molecule,
increasing the combinatorial complexity, referred to as a
“histone code.” In addition to DNA methylation and
histone modifications, there are other interrelated, poten-
tially epigenetic mechanisms including specific deposi-
tion of histone variants, noncoding RNAs, chromatin
remodeling, and nuclear organization of DNA. These
mechanisms add additional layers of regulation and
maintenance of gene expression states in both normal
and diseased tissues.

EPIGENETIC MECHANISMS REGULATING
GENE EXPRESSION IN THE BRAIN

Epigenetic mechanisms are critical to the development
and function of the mammalian CNS). Global DNA
methylation levels change during brain development,14

and methylation of specific genes can vary among dif-
ferent brain regions, cell types, and potentially even be-
tween the same cell type from different brain regions.15

The relationship between brain-region-specific gene ex-
pression16 and brain-region-specific DNA methylation
has not been fully explored. However, distinct CNS cell
types may be differentially marked by DNA methylation.
In murine astrogliogenesis, for example, DNA demeth-
ylation of the Gfap promoter including a critical STAT3
DNA binding site is associated with activation of Gfap
transcription, a known marker of the astroglial lineage.17

One particular CpG site within the Gfap promoter is
methylated in neural precursors and postmitotic neurons
but unmethylated in astrocytes.17–19

DNA methyltransferases are important in CNS devel-
opment and function. The maintenance methyltrans-
ferase DNMT1 is highly expressed in the mammalian
brain,20–22 including in postmitotic neurons, despite its
proposed primary role in copying methylation during
DNA replication. DNA methylation changes in response
to neural activity may be one function of DNMT1 in
postmitotic neurons.23 Conditional Dnmt1 deletion in
murine postmitotic neurons does not affect overall DNA
methylation levels or cell survival.24 On the other hand,
conditional Dnmt1 deletion in embryonic day 12 neuro-
blasts resulted in DNA hypomethylation and lethality
immediately after birth due to CNS-associated respira-
tory failure, indicating a requirement for DNA methyl-
ation in these cells. Mosaic mice with �30% Dnmt1-/-
cells survived into adulthood, but mutant cells were
rapidly eliminated from the brain within 3 weeks of birth,
further supporting the necessity of DNMT1 for CNS cell
survival. Dnmt3b is expressed in the murine CNS for a

short time during neurogenesis, whereas Dnmt3a is ex-
pressed in both prenatal and postnatal CNS.25 Dnmt3b-/-
mice exhibit prenatal lethality and neural tube defects,
demonstrating a critical role for DNMT3b in neurode-
velopment.26 Mice with conditional deletion of Dnmt3a
in the nervous system are apparently born healthy but die
prematurely, displaying hypoactivity, abnormal walking,
and poor performance on tests of neuromuscular function
and motor coordination.27 Thus, the effects of Dnmt
deficiency on brain functions are significant, but the spe-
cific effects on neurons and glia require further investi-
gation.
Recent evidence indicates that neuronal differentiation

is regulated in part by DNA demethylation and polycomb-
mediated histone H3 K27 trimethylation (H3K27me3).28

DNA methylation contributes to repression of pluripo-
tency in lineage-committed neural progenitors. Also,
promoters marked by H3K27me3 in neural stem cells
often gain DNA methylation during differentiation.29

Thus, context-dependent interactions between different
epigenetic mechanisms guide neural differentiation, and
underscore the general importance of epigenetics in nor-
mal CNS development and maintenance of cellular iden-
tity.
Several human neurodevelopmental disorders are

caused by mutations in genes encoding proteins involved
in epigenetic mechanisms. Rett syndrome, for example,
is a severe neurodevelopmental disorder caused by mu-
tations in MECP2, which encodes a protein that can bind
to methylated DNA and regulate gene expression.30 ICF
syndrome, which includes mental retardation, is caused
by mutations in the de novo DNA methyltransferase
DNMT3B.31–33 Furthermore, the dependence of the CNS
on epigenetic regulation extends beyond DNA methyl-
ation and DNA methyltransferases, as mutations in genes
encoding other epigenetic regulatory proteins can cause
neurodevelopmental disorders. One example is JARID1/
SMCX, encoding a JmjC-domain-containing histone de-
methylase, which, when mutated, causes a form of X-
linked mental retardation.34–36 These examples illustrate
the importance of epigenetic control of gene expression
in the development and function of the CNS. This knowl-
edge of the critical role of epigenetic mechanisms and
marks in the CNS provides a foundation for understand-
ing the role of epigenetic regulation in tumors arising
from CNS cells.

DNA HYPOMETHYLATION AND CPG
ISLAND HYPERMETHYLATION IN GLIOMAS

Genome-wide or “global” hypomethylation occurs
at a high frequency (�80%) in primary glioblastoma
(GBM).37–39 The level of hypomethylation varies be-
tween tumors, ranging from near normal brain levels to
approximately 50% of normal in approximately 20% of
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the cases, reflecting the massive demethylation of ap-
proximately 10 million CpG sites per tumor cell. Both
single-copy loci and repetitive sequences can be hypom-
ethylated in GBM. The most severe globally hypomethy-
lated primary GBMs are also the most proliferative and
are associated with demethylation and transcriptional
activation of the putative oncogene MAGEA1.37,40

MAGEA1, a member of the MAGE family of genes, is
one of a group of germline-specific genes that become
transcriptionally activated in multiple types of human
cancers, and this activation is correlated with genome-
wide hypomethylation and increased cellular prolifera-
tion.37,41 The expression of the protein products of these
“cancer-testis antigen” genes in tumors results in the
recognition of tumor-specific antigens on the cell sur-
face by cytolytic T lymphocytes and also inhibits p53
function and response to chemotherapy in cancer cell
lines.42,43 Interleukin-13Ra2 is another classic cancer-
testis antigen that is epigenetically activated in glio-
mas.44,45 IL13Ra2 expression is cancer cell-specific, and
antibodies directed to it have been used to deliver toxic
agents, such as Pseudomonas exotoxin to glioma cells in
patients. Although the full consequences of genomic hy-
pomethylation are unknown, it is sufficient to initiate
tumorigenesis in mice, and can modulate tumor inci-
dence in mouse models of cancer driven by genetic al-
terations.8,46–48 The molecular consequences of global
hypomethylation in gliomas have not been studied in-
depth.
Locus-specific hypermethylation, mostly at CpG is-

land (CGI) promoters, is frequent in gliomas. CGIs are
regions of � 500 bp – 1kb where CpG nucleotides are
�5 times more abundant compared with the rest of the
genome.49 In gliomas, CGI promoter hypermethylation
occurs at genes with diverse functions related to tumor-
igenesis and tumor progression, including cell-cycle reg-
ulation, DNA repair, apoptosis, angiogenesis, invasion,
and drug resistance. For example, the retinoblastoma
(RB), PI3K, and p53 pathways are affected by CGI pro-
moter hypermethylation (including promoters of the
genes CDKN2/p16, RB, PTEN, TP53 and p14ARF).50–55

CGI hypermethylation in gliomas may also occur at
genes that are not expressed in the brain, suggesting not
all CGI methylation events are functionally important for
tumorigenesis.
Screens for promoter hypermethylation in GBM have

identified new tumor suppressor candidates, as well as
bona fide tumor suppressors. One example is at chromo-
some 19q, where deletions in gliomas and neuroblasto-
mas have suggested the presence of a tumor suppressor
gene. Expression array analysis of glioma cells treated
with a DNA demethylating agent discovered a candi-
date tumor suppressor, epithelial membrane protein 3
(EMP3), a myelin-related gene involved in cell prolifer-
ation and cell-cell interactions.56 EMP3 is silenced by

hypermethylation in primary gliomas and reintroduction
of EMP3 in neuroblastoma cell lines with EMP3 silenc-
ing resulted in reduced colony formation in vitro and
decreased xenograft growth in mice, suggesting tumor
suppressor function.56

Promoter hypermethylation regulates the oncogenic
and proliferation-promoting transforming growth factor
(TGF)-beta signaling pathway in aggressive, highly pro-
liferative GBMs. High levels of TGF-beta signaling are
normally associated with poor prognosis. TGF-beta sig-
naling promotes proliferation through the induction of
platelet-derived growth factor (PDGF)-B. However, epi-
genetic silencing of PDGF-B can override the increased
proliferative effects of TGF-beta signaling. Specifically,
PDGF-B promoter hypermethylation prevents PDGF-B
transcriptional activation by TGF-beta-induced Smad
proteins.57 The oncogenic affect of the TGF-beta path-
way is therefore blocked by epigenetic alteration of one
of its targets.
Genes involved in invasion and metastasis can also be

affected by promoter hypermethylation in gliomas. A
high frequency of astrocytomas (88%), GBMs (87%),
and glioma cell lines (100%) exhibit CGI promoter hy-
permethylation of the protocadherin-gamma subfamily
A11 (PCDH-gamma-A11) gene, which is believed to be
important in invasion of cancer cells into normal brain
parenchyma.58 However, the use of the sensitive meth-
ylation-sensitive PCR method for detecting methylation
may overestimate the percentage of tumors in which
methylation reaches a biologically meaningful level.
Promoter hypermethylation can modulate sensitivity

to drugs and radiotherapy in GBM. The best known
example isMGMT promoter methylation and response to
DNA alkylating agents (see below), but there are other
cases and this research area is likely to expand in the
future.59,60 This suggests that epigenetic profiling might
be one way to categorize GBMs and to rationally apply
patient-specific therapy.
For other sets of genes, promoter DNA hypermethyl-

ation might not be causal or may not be required for gene
silencing in cancer. For example, the enhancer of zeste
2 (EZH2) histone methyltransferase silences approxi-
mately 5% of gene promoters in prostate cancer cells by
histone H3 lysine trimethylation independent of DNA
methylation.61 The order and hierarchy of epigenetic
modifications in the process of gene silencing is an area
of extensive investigation will likely yield clues about
potential primary causes of epigenetic silencing in GBM
and other cancers.

ABERRANT METHYLATION OF MGMT AND
RESPONSE TO DNA ALKYLATING AGENTS

One particularly important example of epigenetic si-
lencing of a drug-resistance gene is promoter hypermeth-
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ylation of O6-methylguanine-DNA methyltransferase
(MGMT) in GBM.MGMT encodes a DNA repair protein
that removes alkyl adducts at the O6 position of guanine
and (less frequently) at the O4 position of thymine.62

Expression of MGMT protects normal cells from carcin-
ogens; however, it can also protect cancer cells from
chemotherapeutic alkylating agents. MGMT promoter
methylation is negatively correlated with expression and
is associated with decreased transcription factor binding
in GBM cell lines.63,64 An initial report suggested a
paradoxical positive correlation between MGMT meth-
ylation and expression in cancer cell lines.65 However,
updates in the genomic structure of the MGMT gene
showed that the paradoxically higher level of methyl-
ation in MGMT-expressing cells was located 50kb
downstream of the MGMT promoter, well into the gene
body. Hypermethylation of theMGMT promoter, leading
to transcriptional silencing, occurs in multiple types of
human cancers, including glioma, lymphoma, breast can-
cer, prostate cancer, and retinoblastoma.66 In human
colorectal cancer, MGMT promoter methylation is asso-
ciated with increased G to A transition mutations in
TP53 and K-RAS.67,68 In GBM, MGMT promoter meth-
ylation correlates with mismatch repair deficiency and a
putative hypermutator phenotype.69

MGMT hypermethylation is associated with signifi-
cantly longer survival in patients with GBMs and low-
grade gliomas treated with radiation and alkylating
agents, including temozolomide,70,71 although it is un-
clear if this is directly due to reduced MGMT expression.
Furthermore, MGMT hypermethylation is a predictor of
the incidence and outcome of pseudoprogression,72 the
progressive and enhancing lesions observed by MRI im-
mediately after the end of treatment that are an effect of
the radiotherapy and temozolomide treatment rather than
tumor progression.72 MGMT hypermethylation is a late
event in progressive oligodendrogliomas, suggesting that
MGMT methylation may have a different prognostic
value for oligodendrogliomas than for GBMs and low-
grade gliomas.73 The predictive value of MGMT meth-
ylation may be increased when used in conjunction with
gene expression data.74 However, further technical re-
finement is needed for the commonly used MGMT meth-
ylation assay: particularly when applied to fixed tissue,
the methylation-sensitive PCR method is prone to false
positives.75

SUBSETS OF EPIGENETIC ALTERATIONS
ARE TUMOR GRADE-SPECIFIC

Different glioma subtypes and tumor grades display
distinct aberrant DNA methylation profiles.76 Secondary
GBMs have a higher overall frequency of promoter
methylation compared to primary GBMs at least for the
promoters of p14ARF, p16INK4a, RB1, MGMT, and TIMP-3.77

Low-grade gliomas and secondary GBMs show PTEN
promoter methylation and activation of the PI3K path-
way as measured by protein kinase B (PKB/AKT) phos-
phorylation, whereas PTEN promoter methylation is a
rare occurrence in primary GBMs.78 On the other hand,
the same epigenetic alterations can be shared by different
types of brain tumors, even in different species.79 CNS
cancers other than gliomas also display distinct methyl-
ation profiles (e.g., hMLH1, TIMP3, MGMT, p73, and
THBS1 are frequently hypermethylated in schwanno-
mas,80 and NF2 is genetically and epigenetically altered
in meningioma).81

The progression of glioma over time is associated with
distinct epigenetic patterns. Malignant progression and
shorter survival in astrocytoma are associated with
p14ARF but notMGMT hypermethylation, suggesting that
these are two distinct pathways in astrocytoma with dif-
ferent clinical consequences.82 Recurrence is also char-
acterized by specific epigenetic marks: hypermethylation
of the pro-apoptotic gene caspase-8 is frequently associ-
ated with relapsed GBM.83 Increased recurrence-free
survival is associated with CITED4 hypermethylation at
1p43.2 and 1p and 19q losses.84 Murine glioma models
also provide evidence of a role for epigenetic mecha-
nisms in modifying tumor progression. In a mouse model
of astrocytoma with mutant Trp53 and Nf1, a genetic
modifier controlling susceptibility to progression is itself
epigenetically modified.85

EPIGENETIC ALTERATIONS IN GLIOMA
TUMOR-INITIATING CELLS

DNA hypermethylation can alter the differentiation
properties of the fraction of glioma cells believed to be
putative cancer stem cells, also called tumor-initiating
cells. Normal astroglial differentiation is regulated by the
bone morphogenetic protein (BMP)-mediated and ciliary
neurotrophic factor-mediated Jak/STAT pathway. In a
subset of GBM tumor-initiating cells, this differentiation
pathway is inhibited by epigenetic silencing of the BMP
receptor 1B (BMPR1B) gene.86 This silencing is depen-
dent on the histone methyltransferase enhancer of zeste 2
(EZH2) and DNA methylation, and could be reversed by
treatment with a DNA demethylating agent. These data
demonstrate that a subset of human GBM cells are
blocked from differentiation though a defect in the BMP
signaling pathway. Furthermore, forced expression of
BMPR1B could restore the differentiation potential of
these cells and can decrease tumorigenicity. These find-
ings reinforce the idea that future epigenetic therapies
might be applied rationally, guided by patient-specific
epigenetic profiling.
The gene encoding the CD133 cell-surface marker

used to identify and enrich GBM tumor-initiating cells is
itself subject to epigenetic regulation. In GBM cell lines,
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CD133 promoter CGI DNA methylation was negatively
correlated with CD133 expression.87 In pure CD133�
GBM lines, this methylation was absent. Furthermore,
CD133 methylation was not observed in normal brain
but only in cultured and primary tumors, suggesting that
it could be a tumor-specific epigenetic marker. In con-
trast, another study found CD133 promoter CGI meth-
ylation in brain and hypomethylation in GBMs with high
expression of aberrant of CD133 transcripts.88 Follow-up
studies are needed to more thoroughly appreciate the
functional importance of these results.

MAPPING GENOME-WIDE METHYLATION
PATTERNS IN BRAIN TUMORS

There are multiple strategies for discovering novel
epigenetic alterations in brain tumors. One approach is to
examine candidate loci that are affected by deletion or
mutation on one allele, based on the idea that DNA
hypermethylation might inactivate the other allele, lead-
ing to complete silencing or loss of normal function. This
candidate gene strategy is more likely to discover hyper-
methylation of tumor suppressors rather than hypom-
ethylation events. A more unbiased approach is to scan
the entire genome for both hypermethylation and hypom-
ethylation events. For gliomas, this was approached first
through the use of methyl-sensitive restriction enzy-
mes using restriction landmark genomic scanning.89–94

Newer methods such as reduced representation bisulfite
sequencing95 and methylated DNA immunoprecipitation
combined with DNA microarrays96 or massively parallel
sequencing97 more completely interrogate the epigenome
and are poised to dramatically augment our understand-
ing of epigenetic dysregulation in gliomas and other
cancers.
An additional approach to uncovering epigenetically

altered genes is to treat cells with the DNMT1 inhib-
itor 5-aza-2=-deoxycytidine (5-aza) and/or the histone
deacetylase inhibitor trichostatin A (TSA) followed by
gene expression microarray analysis.98 This strategy
identified brain expressed X-linked 1 (BEX1) and 2
(BEX2) as candidate tumor suppressors in glioma99 and
SPINT2 in medulloblastoma.100 Another study identified
�160 genes upregulated by combined 5-aza and TSA
treatment in glioma cell lines and provided evidence that
several of the epigenetically silenced loci are aberrantly
methylated by the combined action of DNMT1 and
DNMT3B, whereas others are regulated only by a single
DNMT.101 5-aza treatment of short-term cultured pri-
mary GBMs identified two genes, runt-related transcrip-
tion factor 3 (RUNX3) and testin (TES), with aberrant
methylation.102 In this chemical approach, numerous
genes may be indirectly activated. Thus, follow-up anal-
yses of the epigenetic marks at the activated genes in
primary tumors are essential.

ALTERATIONS IN HISTONE
MODIFICATIONS IN GLIOMA

In addition to DNA hypermethylation, cancer genes
can be silenced or activated by aberrant patterns of his-
tone modifications, either alone, or in combination with
DNA methylation. Silenced CGI promoters, for example,
are characterized by increased histone H3K9 methylation
and loss of H3K9 acetylation. In embryonic stem cells,
the dual presence of inactivating H3K27 methylation and
activation-associated H3K4 methylation, called bivalent
domains, is believed to create a “poised” chromatin state
for developmentally regulated genes, allowing silencing
in embryonic stem cells and subsequent transcriptional
activation or repression in differentiated cells.103 Biva-
lent domains, along with additional repressive marks
(dimethylated H3K9 and trimethylated H3K9), are found
in embryonal carcinoma cells at genes that are frequently
silenced by DNA hypermethylation in adult human can-
cer cells. These histone modifications are hypothesized
to predispose tumor suppressor genes to DNA hyper-
methylation and heritable gene silencing.104 Trimethyla-
tion of H3K27 marks silenced genes in the absence of
DNA hypermethylation, although this has not yet been
shown in gliomas.
Genes encoding DNMTs are not frequently mutated

in human cancers, with one report of DNMT1 mutations
in colorectal cancer.105 However, overexpression of
DNMT1, 3a, and 3b has been reported in multiple tumor
types.106 Furthermore, there are many instances of ge-
netic alterations and/or deregulated expression of genes
encoding histone-modifying enzymes. In acute leuke-
mias for example, translocations involving the mixed
lineage leukemia (MLL) gene, encoding an H3K4 meth-
yltransferase, are common.107 These translocations result
in MLL fusion proteins that have lost H3K4 methyltrans-
ferase activity. The polycomb protein EZH2, an H3K27
methyltransferase, is overexpressed and amplified in
multiple types of human cancers.108

The gene encoding BMI-1, a member of the polycomb
group complex that regulates histone H3K27 methyl-
ation, is subject to frequent copy number alterations in
both low-grade and high-grade gliomas, and BMI-1 de-
letions are associated with poor prognosis in patients.109

Furthermore, BMI-1 is also upregulated in a proportion
of gliomas.110 An important target of BMI-1 transcrip-
tional repression is the Ink4a/Arf locus, harboring two
tumor suppressors in gliomas. Repression of this locus
by BMI-1 promotes cell proliferation.111,112 However, in
an orthotopic transplantation model, BMI-1 is also re-
quired for tumorigenesis independent of Ink4a/Arf, sug-
gesting additional targets of epigenetic regulation by
BMI-1 may be important in glial tumorigenesis.113,114

Mutations resulting in altered histone acetyltransferase
activity also occur in cancer-related diseases: CBP mu-
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tations, abolishing histone acetyltransferase activity,
cause Rubenstein-Taybi syndrome, a developmental dis-
order that is associated with a higher risk of cancer.115 In
GBM, there is preliminary evidence for deregulation of
genes controlling histone modifications. Expression of
some histone deacetylase (HDAC) proteins is reported to be
altered in GBM. Class II and IV HDACs displayed de-
creased mRNA expression in GBMs compared to low-
grade astrocytomas and normal brain, and overall histone
H3 was more acetylated in GBMs.116 Large-scale sequenc-
ing of protein-coding genes in GBMs uncovered mutations
in many genes involved in epigenetic regulation, including
histone deacetylases HDAC2 and HDAC9, histone dem-
ethylases JMJD1A and JMJD1B, histone methyltrans-
ferases SET7, SETD7, MLL, MLL4 and methyl-CpG bind-
ing domain protein 1 (MBD1).117 These intriguing initial
studies suggest that alterations in epigenetic mechanisms
could be a major defect in GBM.

WHAT CAUSES EPIGENETIC ALTERATIONS
IN GLIOMA?

The cause(s) and consequences of epigenetic dysregu-
lation in GBM, and cancer in general, remain an area of
intense investigation, with some progress being made in
understanding the consequences. The causes, however,
remain mostly obscure. Multiple causes have been pro-
posed for aberrant DNA methylation. Alteration in DNA
methyltransferase enzymes is a possibility, and aberrant
expression of DNMTs has been observed. For example,
DNMT3b splice variants and aberrant transcripts are
overexpressed or ectopically expressed in some cancers
and cancer cell lines. The splice variant DNMT3b4,
which lacks the conserved methyltransferase motifs IX
and X, is overexpressed in hepatocellular carcinoma.118

Furthermore, its forced overexpression caused pericen-
tromeric hypomethylation, suggesting that DNMT3b4
might act in a dominant negative manner, blocking meth-
ylation of this region of repetitive DNA. Another study
of primary acute leukemia cells and cancer cell lines
(including GBM cell lines) identified expression of over
20 aberrant DNMT3b transcripts with altered 5= splicing,
coding for truncated proteins that lack the C-terminal
catalytic domain.119 Although aberrant DNMT3b tran-
scripts account for only a small fraction of total DNMT3b
mRNA in this study, at least some of these are translated
to proteins, and their overexpression was linked to
changes in DNA methylation level and mRNA abun-
dance of other genes. Of these transcripts, DNMT3b4 is
the only one shown to produce a dominant negative-
acting protein in cancer cells, leading to hypomethyla-
tion. Increased DNMT1 and decreased DNMT3a expres-
sion have also been reported in GBM cell lines, and the
decrease in DNMT3a is hypothesized to contribute to

Sat2 hypomethylation in the tumor stem cell subpopula-
tion.39

In theory, either an initial genetic or epigenetic abnor-
mality could result in tumorigenesis and cause further
downstream genetic and epigenetic changes. In glioma,
epigenetic silencing of the tumor suppressor gene WNK
lysine deficient protein kinase 2 (WNK2) was signifi-
cantly associated with combined deletion of chromo-
somes 1p and 19q.120 WNK2 indirectly inhibits MEK1,
enhancing growth promoting signals through EGFR,
which is often itself overexpressed and constitutively
active due to genomic amplification and rearrangement,
respectively.121,122 Thus, it is possible that the epigenetic
silencing of WNK2 interacts on a functional level with
genetic alteration of EGFR signaling, a common abnor-
mality in GBM. A GBM with a point mutation in WNK2
was reported recently,117 whereas commonly occurring
cancers exhibit relatively frequent point mutations in all
four WNK genes. In meningioma, grade-specific epige-
netic alterations in WNK2 are the dominant mechanism
of gene inactivation, occurring in 83% and 71% of grade
II and III tumors.123

EPIGENETIC THERAPIES FOR GLIOMA

Epigenetic-based therapy such as the DNMT inhibitor
decitabine (5-aza-2=-deoxycytidine) and the HDAC
inhibitor (HDACi) suberoylanilide hydroxamic acid
(SAHA; vorinostat) are currently being tested in mul-
tiple cancers, although only HDACis are in trials for
GBM treatments. In contrast to genetic mutations,
which are “hard-wired” once, mutated epimutations,
such as promoter hypermethylation and histone acet-
ylation status are theoretically reversible by drug treat-
ment or possibly diets.
A major unresolved issue for epigenetic therapy of

cancer is target specificity. First, some genes that require
DNA methylation or histone deacetylation for silencing
in normal cells could be unintentionally activated by
agents that inhibit DNMTs or HDACs. Second, cancer
genomes are characterized by both DNA hypermethyl-
ation and hypomethylation. Therefore, using drugs that
reactivate silenced tumor suppressors may have the un-
desired effect of further activating oncogenes through
hypomethylation. These problems should be addressed to
gain a more complete understanding of the molecular
events resulting from epigenetic-based therapy.
HDACs catalyze the deacetylation of lysine residues

within the N-terminal tails of core histones and also
within nonhistone proteins. As a result, their effects are
complex and involve histone and nonhistone substrates,
and the mechanism of specificity for each HDAC is not
fully understood. In general, HDACs promote a closed
chromatin structure that represses transcription. There
are 18 known HDACs in humans, divided into five main
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classes, with different target specificities.124 HDACs of
class I (HDACs 1, 2, 3 and 8), class IIA (HDACs 4, 5, 7,
and 9), class IIB (HDACs 6 and 10), and class IV
(HDAC 11) all contain zinc in their active sites and are
inhibited by the HDACis TSA and SAHA. Class III
HDACs (sirtuins) do not contain zinc and are not inhib-
ited by TSA or SAHA.
The rationale for using HDACis in cancer therapy is

two-fold. First, HDACis promote a more open chromatin
conformation and might therefore permit better access of
DNA damaging agents to the chromatin and increase the
sensitivity to killing by these agents. Second, HDACis
will reverse some of the aberrant epigenetic gene silenc-
ing in GBMs, presumably leading to enhanced cell-cycle
arrest and apoptosis from DNA-damaging agents.125 Al-
though it is not clear how consistently HDACis activate
specific pathways from one GBM to the next, HDACis
do synergize with DNA damaging agents in arresting or
killing glioma cells in vitro.
HDACis are comprised of several classes of com-

pounds, including hydroxymates (SAHA, TSA), cyclic
peptides (depsipeptide), aliphatic acids (valproic acid,
butyrate), and benzamides. No single HDACi is effective
against all HDACs. HDACis cause increased acetylation
of histone and nonhistone proteins, and can reactivate
p21, which contributes to cell-cycle arrest.126,127 Non-
cancerous cells are more resistant to the effects of
HDACi, but the reasons for this selective sensitivity are
unclear.128 HDACis alter the expression levels of only a
subset of expressed genes in transformed cells (�2 to
10%), and both increases and decreases in transcript
levels are observed.129–132

SAHA is currently being tested as a monotherapy or in
combination therapy in 5 phase I or I-II clinical trials for
gliomas. SAHA targets class I and II HDACs at micro-
molar concentrations, and preclinical studies found that it
sensitizes glioma cells in vitro, ex vivo, and in vivo to
chemotherapy and radiation.133–137 SAHA treatment in-
creased p21 promoter histone H3 acetylation in the U87
glioma cell line, and inhibited the proliferation of GL26
glioma cells implanted in mice.126 Two of the current
clinical trials test SAHA in combination with temozolo-
mide, and one also includes radiotherapy. A third trial
consists of SAHA plus isotretinoin and carboplatin, a
fourth uses SAHA plus bortezomib, and a fifth is testing
SAHA as a monotherapy.
Trials are also currently underway for two additional

HDACis, valproic acid (Depakene; Depakote) and dep-
sipeptide (Romedepsin; FK-228), and there are addi-
tional HDACi compounds that are not yet in clinical
trials. Valproic acid is being tested against GBM in com-
bination with temozolomide plus radiation, and in a
broader second trial against neuronal tumors and brain
metastases in combination with etoposide. Depsipeptide
monotherapy is being tested against high-grade gliomas.

Valproic acid is active against class I and IIA HDACs at
millimolar concentrations; depsipeptide is active against
class I HDACs at nanomolar concentrations. An addi-
tional HDACi not yet in clinical trials is pivaloyloxym-
ethyl butyrate (AN-9), a derivative of butyrate. Butyrate
is an aliphatic acid HDACi effective against class I and
IIA HDACs at millimolar concentrations. AN-9 shows
efficacy in GBM cell culture and animal models.138,139

Furthermore, AN-9 sensitized GBM mouse xenografts to
radiation and showed decreased tumor growth and in-
creased survival. There are several HDACis that have
shown efficacy against cancer cells but have not yet been
tested for gliomas including panobinostat (LBH589)140

and belinostat (PXD101).141 The discovery and develop-
ment of new epigenetic enzyme-targeting compounds is
an area of active research in the pharmaceutical industry.

MOLECULAR BIOMARKERS OF RESPONSE
AND PATIENT SURVIVAL

Blood plasma in cancer patients contains DNA de-
rived from tumor cells due to necrotic or apoptotic can-
cer cells releasing genomic DNA. This potentially pro-
vides a less invasive method for biomarker detection.
Aberrantly hypermethylated cancer genes found in pla-
sma could be one such type of biomarker. This type of
analysis may provide clinically useful information relat-
ing to diagnosis, prognosis, and follow-up after therapy.
Methylated tumor-specific biomarkers have, in fact, been
found in plasma and serum for several types of can-
cer.142,143 There is a significant amount of tumor DNA in
the plasma of high-grade glioma patients, and in 60% of
patients, the same methylated promoters (p16INK4a,
MGMT, p73, and RARbeta were tested) could be de-
tected in both tumor and plasma DNA.144 The frequency
of detection of methylated promoters in plasma of GBM
patients was similar to that in other cancers, suggesting
that the blood-brain barrier does not completely block
the transfer of tumor DNA to plasma. This method is
theoretically highly sensitive, because small amounts of
methylated DNA can be detected in a sample by meth-
ylation-sensitive PCR.

FUTURE DIRECTIONS

Epigenetic studies of glioma are poised to 1) make
substantial contributions to the understanding of glioma
biology, 2) identify new predictive biomarkers, and 3)
discover novel targets for therapy. New models, such as
patient GBM-derived tumor stem cells grown in neuro-
sphere culture may be a valuable addition to epigenetic
research into GBM, particularly if the epigenetic profiles
of the corresponding primary tumors are retained, as has
been shown for gene expression patterns and invasive
growth patterns of these cells.145,146 Epigenomic profil-
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ing of DNA methylation, histone modifications, and non-
coding RNAs (such as microRNAs) in primary tumors,
orthotopic xenografts, and tumor neurospheres are strat-
egies that will likely uncover many additional epigenetic
alterations in gliomas, and therefore targets for therapy.
There are still many questions remaining about the

role of epigenetics in gliomas. The causes and conse-
quences of epigenetic alterations are still mostly un-
known, and the relative contributions of genetic and
environmental factors in causing epigenetic alterations
have not been quantified. Why are some genes or path-
ways more affected by epigenetic rather than genetic
alterations or vice versa? It is clear that approaches si-
multaneously examining both genetic and epigenetic de-
fects, complemented with functional studies, will be es-
sential. It will also be important to understand the effects
of HDACi on the entire cancer acetylome to elucidate the
molecular consequences of this treatment strategy.
Combination therapy with both DNMT and HDACis

might be one strategy against glioma. A dual treatment
approach may have a synergistic effect on gene activation,
and could allow lower doses of each drug to be used. Such
a strategy is being tested in a clinical trial for myelodys-
plastic syndrome and acute myelogenous leukemia using
the DNMT inhibitor decitabine with or without valproic
acid (clinicaltrials.gov ID NCT00414310).
An area that is mostly unexplored in glioma is the

development and testing of drugs directed against his-
tone modifications other than acetylation. H3K27 meth-
ylation at silenced tumor suppressor promoters could be
targeted to reactivate these genes, for example using the
S-adenosylhomocysteine hydrolase inhibitor 3-deazan-
eplanocin A.147 As epigenetic modifications are better
understood and more types are discovered, additional
epigenetic drug targets can be tested in GBMs and other
cancers.
Consortiums using high-throughput genomic and epi-

genomic approaches are helping to unravel the genetic
and epigenetic alterations that contribute to GBM.
The Cancer Genome Atlas (TCGA; http://cancergenome.
nih.gov/about/mission.asp) is examining genomic chan-
ges and DNA methylation in three cancers, includ-
ing GBM.69 A complementary, privately funded project
sequenced the exons of 20,661 protein coding genes in
GBM, identifying recurrent mutations in the active site
of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM
patients,117 and 70 to 80% of low-grade glioma patients.
The International Cancer Genome Consortium is an ad-
ditional large-scale effort, which will include genomic
and epigenomic profiling. Considering there are 30,000
CGIs in the human genome, tiling microarrays or next-
generation sequencing methods may be required to fully
investigate aberrant CGI DNA methylation in CNS tu-
mors. A full genome-scale map of DNA methylation and
histone modifications in glioma will be a key reference

for accelerating understanding of epigenetic mechanisms
underlying this deadly disease.
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